Exploiting sparse representation in the P300 speller paradigm

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Possible Sources of Perceptual Errors in P300-based Speller Paradigm

INTRODUCTION Our ability of detecting or identifying stimuli is limited and we are susceptible to different kinds of illusions or ‘mistakes’. Perceptual limits are often investigated by using rapid serial visual presentation (RSVP) experiments. In a typical RSVP experiment stimuli are sequentially presented at a rate of 6 to 20 items per second and observers are asked to detect or identify a ta...

متن کامل

Exploiting the P300 paradigm for cognitive biometrics

Abstract: Automatic identification of a person’s individuality is an important issue today. Brain Computer Interfaces (BCI) which uses EEG as a modality is a promising area for cognitive biometrics. A BCI system could be used to recognise a sequence (say letters, colours or images) by the user. This sequence could form a ‘BrainWord’, which could be used for authentication in a multimodal enviro...

متن کامل

Is the P300 Speller Independent?

The P300 speller is being considered as an independent brain–computer interface. That means it measures the user’s intent, and does not require the user to move any muscles. In particular it should not require eye fixation of the desired character. However, it has been shown that posterior electrodes provide significant discriminative information, which is likely related to visual processing. T...

متن کامل

Ensemble SWLDA Classifiers for the P300 Speller

The P300 Speller has proven to be an effective paradigm for braincomputer interface (BCI) communication. Using this paradigm, studies have shown that a simple linear classifier can perform as well as more complex nonlinear classifiers. Several studies have examined methods such as Fisher’s Linear Discriminant (FLD), Stepwise Linear Discriminant Analysis (SWLDA), and Support Vector Machines (SVM...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Tsinghua Science and Technology

سال: 2021

ISSN: 1007-0214

DOI: 10.26599/tst.2019.9010079